Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(12): 3704-3720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37667571

RESUMO

Increase photorespiration and optimising intrinsic water use efficiency are unique challenges to photosynthetic carbon fixation at elevated temperatures. To determine how plants can adapt to facilitate high rates of photorespiration at elevated temperatures while also maintaining water-use efficiency, we performed in-depth gas exchange and biochemical assays of the C3 extremophile, Rhazya stricta. These results demonstrate that R. stricta supports higher rates of photorespiration under elevated temperatures and that these higher rates of photorespiration correlate with increased activity of key photorespiratory enzymes; phosphoglycolate phosphatase and catalase. The increased photorespiratory enzyme activities may increase the overall capacity of photorespiration by reducing enzymatic bottlenecks and allowing minimal inhibitor accumulation under high photorespiratory rates. Additionally, we found the CO2 transfer conductances (stomatal and mesophyll) are re-allocated to increase the water-use efficiency in R. stricta but not necessarily the photosynthetic response to temperature. These results suggest important adaptive strategies in R. stricta that maintain photosynthetic rates under elevated temperatures with optimal water loss. The strategies found in R. stricta may inform breeding and engineering efforts in other C3 species to improve photosynthetic efficiency at high temperatures.


Assuntos
Apocynaceae , Extremófilos , Temperatura , Dióxido de Carbono/farmacologia , Fotossíntese/fisiologia , Água
2.
Nat Plants ; 9(1): 169-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36536013

RESUMO

Photorespiration is an essential process juxtaposed between plant carbon and nitrogen metabolism that responds to dynamic environments. Photorespiration recycles inhibitory intermediates arising from oxygenation reactions catalysed by Rubisco back into the C3 cycle, but it is unclear what proportions of its nitrogen-containing intermediates (glycine and serine) are exported into other metabolisms in vivo and how these pool sizes affect net CO2 gas exchange during photorespiratory transients. Here, to address this uncertainty, we measured rates of amino acid export from photorespiration using isotopically non-stationary metabolic flux analysis. This analysis revealed that ~23-41% of the photorespiratory carbon was exported from the pathway as serine under various photorespiratory conditions. Furthermore, we determined that the build-up and relaxation of glycine pools constrained a large portion of photosynthetic acclimation during photorespiratory transients. These results reveal the unique and important roles of glycine and serine in successfully maintaining various photorespiratory fluxes that occur under environmental fluctuations in nature and providing carbon and nitrogen for metabolism.


Assuntos
Glicina , Fotossíntese , Serina/metabolismo , Plantas/metabolismo , Carbono/metabolismo , Nitrogênio/metabolismo , Dióxido de Carbono/metabolismo
3.
Sci Total Environ ; 801: 149724, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34467903

RESUMO

Finding more efficient ways to monitor and estimate the diversity of mammalian communities is a major step towards their management and conservation. Environmental DNA (eDNA) from river water has recently been shown to be a viable method for biomonitoring mammalian communities. Most of the studies to date have focused on the potential for eDNA to detect individual species, with little focus on describing patterns of community diversity and structure. Here, we first focus on the sampling effort required to reliably map the diversity and distribution of semi-aquatic and terrestrial mammals and allow inferences of community structure surrounding two rivers in southeastern England. Community diversity and composition was then assessed based on species richness and ß-diversity, with differences between communities partitioned into nestedness and turnover, and the sampling effort required to rapidly detect semi-aquatic and terrestrial species was evaluated based on species accumulation curves and occupancy modelling. eDNA metabarcoding detected 25 wild mammal species from five orders, representing the vast majority (82%) of the species expected in the area. The required sampling effort varied between orders, with common species (generally rodents, deer and lagomorphs) more readily detected, with carnivores detected less frequently. Measures of species richness differed between rivers (both overall and within each mammalian order) and patterns of ß-diversity revealed the importance of species replacement in sites within each river, against a pattern of species loss between the two rivers. eDNA metabarcoding demonstrated its capability to rapidly detect mammal species, allowing inferences of community composition that will better inform future sampling strategies for this Class. Importantly, this study highlights the potential use of eDNA data for investigating mammalian community dynamics over different spatial scales.


Assuntos
DNA Ambiental , Cervos , Animais , Biodiversidade , Código de Barras de DNA Taxonômico , Monitoramento Ambiental , Rios
5.
Appl Plant Sci ; 8(12): e11404, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344095

RESUMO

PREMISE: Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves. METHODS: Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present. RESULTS: We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping. DISCUSSION: Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape-an assemblage of modeled leaf snapshots across the shoot-is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...